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çMotivation: RL and Bandits

Episodic Markov Decision Processes (MDP)

Exploitation
Take actions with 
high empirical 
reward to gain 
pay-off

Exploration
Take less observed 
actions to gather 
information

Reinforcement 
Learning (RL)

Multi-Armed
Bandits (MAB)
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Robotics
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Self-driving Cars
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Gaming
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Clinical Trials
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Online Advertising
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Recommendation

O-TS-MDP vs O-TS-MDP+ in MDPs 
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Challenge: Exploitation vs Exploration Trade-Off

Check out our work at UAI 2023 (Oral presentation)!!!

Regret

Stochastic Multi-Armed Bandits (MAB)

Uppr Confidence Boud (UCB) vs Thompson Sampling (TS) in Bandits

Regret

More Optimistic 
Distributions!!

Key idea: Sampled parameters are always better than empirical parameters!
O-TS for bandits was originally proposed and empirically evaluated in Chapelle and Li [2011], May et al. [2012].

Multi-armed 
bandits can 

be viewed as 
stateless MDP

● Real-world environments 
are complex and uncertain

● Training data are expensive

● Our novel algorithms allows 
an agent to converge to 
optimal policies with 
proven sample efficiency

O-TS-MDP enjoys an elegant theoretical analysis, avoiding bounding the absolute 
value of approximation error.  O-TS-MDP+ has the same regret bound as UCB-VI 
[Azar et al., 2017] and can be viewed as a randomized version of UCB-VI.

Optimistic Thompson 
Sampling balances 

exploration-exploitation 
trade-off in RL

Our algorithms enjoy 
elegant analyses and 
tight regret bounds
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