Optimistic Thompson Sampling-Based Algorithms for Episodic Reinforcement Learning

Bingshan Hu (University of Alberta; Amii), Tianyue H. Zhang (University of British Columbia), Nidhi Hegde (University of Alberta; Amii), Mark Schmidt (University of British Columbia; Amii)

Stochastic Multi-Armed Bandits (MAB)

A stochastic MAB instance: \(\Theta = ([K]; \mu_1, \mu_2, \ldots, \mu_K) \)

1. Environment generates a reward vector: \(\left(X_1(t), X_2(t), \ldots, X_K(t)\right) \)
2. Simultaneously, Learner pulls an arm \(J_t \in [K] \)
3. Environment reveals \(X_k(t) \); Learner observes and obtains \(X_k(t) \)

Regret can be expressed as:

\[
R(T; \theta) = \sum_{t=1}^{T} \mathbb{E} \left[\max_{j \in [K]} \mu_j - \mu_{J_t} \right] = \sum_{t=1}^{T} \mathbb{E} \left[\Delta_{J_t} \right]
\]

Mean reward of optimal action: \(\mu_* = \max_{j \in [K]} \mu_j \)

Mean reward gap of sub-optimal action: \(\Delta_j = \mu_* - \mu_j \)

Empirical MAB instance: \(\Theta_t = ([K]; \hat{\mu}_1(t-1), \hat{\mu}_2(t-1), \ldots, \hat{\mu}_K(t-1)) \)

Optimistic Thompson Sampling (O-TS)

- **Sampled parameters are guaranteed to be better than empirical parameters**
- **Reshape posterior distributions in an optimistic way**

Key Challenge: Exploitation vs Exploration Trade-Off

Exploitation

Take actions with high empirical reward to gain pay-off.

Exploration

Take less observed actions to gather information.

Vanilla Stochastic Bandit Algorithms

- **UCB:** Optimism in face of uncertainty
 - Maintain posterior distributions for the mean rewards
 - Randomized
 - Construct confidence intervals
- **TS:**
 - Draw random posterior samples
 - \(\pi_t(J) \) is \(\hat{\mu}_j(t-1) + \sqrt{\frac{\ln(T)}{T_j(t)}} \)
 - \(J_t = \arg \max_{j \in [K]} \pi_t(J) \)
 - TS with Gaussian Priors: \(\hat{\mu}_j(t) \sim N\left(\tilde{\mu}_j(t-1), \frac{1}{b}\right) \)
 - \(J_t = \arg \max_{j \in [K]} \tilde{\mu}_j(t) \)

Contributions and Related Work

- **O-TS-MDP** enjoys an elegant theoretical analysis, avoiding bounding the absolute value of approximation error. O-TS-MDP* can be viewed as a randomized version of UCB-VI [Azar et al., 2017].

- **O-TS** for bandits was originally proposed and empirically evaluated in Chapelle and Li [2011]. May et al. [2012]. O-TS+ for bandits can be viewed as a randomized version of UCB1 [Auer et al., 2002].

Acknowledgements

This work was supported by Alberta Machine Intelligence Institute (Amii), the Canada CIFAR AI Chair Program, and the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants.