
MDP Experiments

Optimistic Thompson Sampling-Based Algorithms for Episodic Reinforcement Learning

•Real-world environments 
are complex and uncertain


•Training data is expensive Reinforcement 
Learning (RL)

Multi-Armed
Bandits (MAB)

🚘  🏁
Self-Driving Cars

🤖  🦾
Robotics

👾  ♟
Gaming

👗  👞
Online Advertising

💊  👩⚕
Clinical Trials

🎥  🎵
Recommendation

Multi-armed bandits 

can be viewed as 


stateless MDP

Key Challenge: Exploitation vs Exploration Trade-Off

Exploitation

Take actions with 

high empirical 
reward to gain 

pay-off

Exploration

Take less 
observed 

actions to gather 
information

A stochastic MAB instance: ⇥ := ([K];µ1, µ2, . . . , µK)
Learning protocol: in every round t = 1, 2, . . . , T

1. Environment generates a reward vector
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2. Simultaneously, Learner pulls an arm Jt 2 [K]
3. Environment reveals XJt(t); Learner observes and obtains XJt(t)

Regret can be expressed as
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Mean reward of optimal action µ⇤ = max
j2[K]

µj

Mean reward gap of sub-optimal action �j = µ⇤ � µj

Empirical MAB instance: ⇥t := ([K]; bµ1(t� 1), bµ2(t� 1), . . . , bµK(t� 1))

Stochastic Multi-Armed Bandits (MAB)

An MDP instance M = ([S], [A], H, ~p, µ, T, p0)

. (s, a) 2 [S]⇥ [A]: state-action pair

. ~ps,a,t: transition probability distribution for (s, a) in round t

. µs,a,t: mean reward for (s, a) in round t

. p0: initial state distribution

. H: number of rounds in an episode

. T : number of episodes

Episodic Markov Decision Processes (MDP)
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• O-TS-MDP enjoys an elegant theoretical analysis, 
avoiding bounding the absolute value of approximation 
error. O-TS-MDP+ can be viewed as a randomized 
version of UCB-VI [Azar et al., 2017].

• O-TS for bandits was originally proposed and 
empirically evaluated in Chapelle and Li [2011], May et 
al. [2012]. O-TS+ for bandits can be viewed as a 
randomized version of UCB1 [Auer et al., 2002].
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Contributions and Related Work

Optimistic Thompson Sampling 
(O-TS)

•Sampled parameters are 
guaranteed to be better than 
empirical parameters

•Reshape posterior distributions 
in an optimistic way

O-TS-MDP and O-TS-MDP+


UCB: µj(t) = bµj(t� 1) +
q

1.5 ln(t)
Oj(t�1) , Jt = argmax

j2[K]
µj(t)

TS with Gaussian Priors: eµj(t) ⇠ N
⇣
bµj(t� 1), 1

Oj(t�1)

⌘
, Jt = argmax

j2[K]
eµj(t)

UCB: 

• Optimism in face of uncertainty

• Deterministic

• Construct confidence intervals

TS: 

• Maintain posterior distributions 

for the mean rewards

• Randomized

• Draw random posterior samples

Vanilla Stochastic Bandit Algorithms

Goal of learner: 

Visit a sequence of state-action pairs 

to accumulate as much reward as 
possible over T episodes (in total HT 

rounds)

Empirical MDP instance: Mk := ([S], [A], H, p̂k�1, µ̂k�1, T, p0)

O-TS and O-TS+
Bandit Regret Bounds
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MDP Regret Bounds
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Fast RL algorithms allow an 
agent to use less samples to 

learn a good policy

V ⇡
t : value function for policy ⇡ in round t

Policy ⇡ = (⇡(·, 1),⇡(·, 2), . . . ,⇡(·, H)): a sequence of functions, where each
⇡(·, t) : S ! A takes a state s as input and outputs an action a that will be
taken in that round t

Regret can be expressed as
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