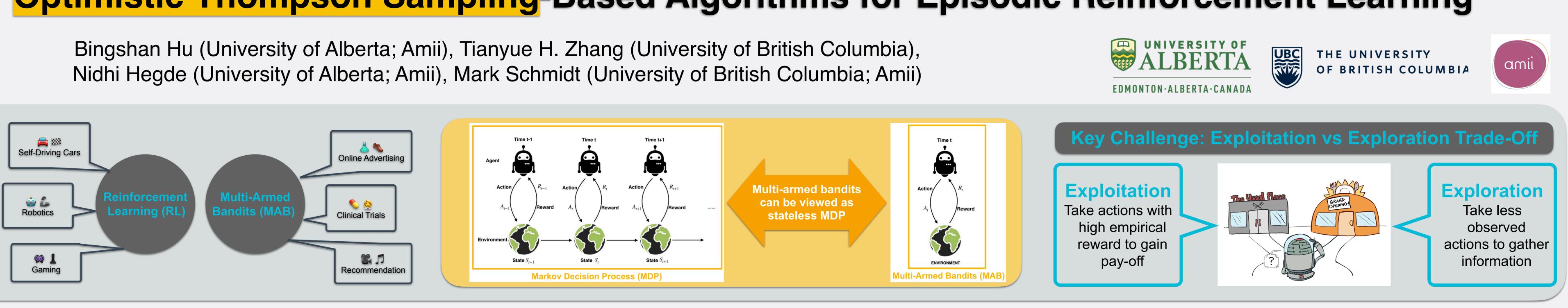
Optimistic Thompson Sampling-Based Algorithms for Episodic Reinforcement Learning

 Real-world environments are complex and uncertain Training data is expensive

Fast RL algorithms allow an agent to use less samples to learn a good policy



Stochastic Multi-Armed Bandits (MAB)

A stochastic MAB instance: $\Theta := ([K]; \mu_1, \mu_2, \dots, \mu_K)$ Learning protocol: in every round $t = 1, 2, \ldots, T$ 1. Environment generates a reward vector $X_1(t), \ldots, X_j(t), \ldots, X_K(t)$ $\sim \operatorname{Ber}(\mu_i)$ 2. Simultaneously, Learner pulls an arm $J_t \in [K]$ 3. Environment reveals $X_{J_t}(t)$; Learner observes and obtains $X_{J_t}(t)$ Regret can be expressed as $\mathcal{R}(T;\Theta) = \sum_{t=1}^{I} \mathbb{E} \left| \max_{j \in [K]} \mu_j - \mu_{J_t} \right| = \sum_{t=1}^{I} \mathbb{E} \left[\Delta_{J_t} \right]$ Mean reward of optimal action $\mu_* = \max_{j \in [K]} \mu_j$ Mean reward gap of sub-optimal action $\Delta_j = \mu_* - \mu_j$ Empirical MAB instance: $\Theta_t := ([K]; \widehat{\mu}_1(t-1), \widehat{\mu}_2(t-1), \dots, \widehat{\mu}_K(t-1))$

Vanilla Stochastic Bandit Algorithms

 UCB: Optimism in face Deterministic Construct confide 		 TS: Maintain posterior dist for the mean rewards Randomized Draw random posterio
UCB:	$\overline{\mu}_j(t) = \widehat{\mu}_j(t)$	$(t-1) + \sqrt{\frac{1.5\ln(t)}{O_j(t-1)}}, \qquad J_t = a_t$

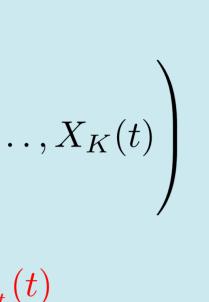
TS with Gaussian Priors:
$$\widetilde{\mu}_j(t) \sim \mathcal{N}\left(\widehat{\mu}_j(t-1), \frac{1}{O_j(t-1)}\right), \quad J_t =$$

O-TS a	and O	-TS+
--------	-------	------

	Bandit Regret Bounds	
UCB1	$O\left(\sqrt{KT\ln(T)}\right)$	
TS	$O\left(\sqrt{KT\ln(K)}\right)$	
O-TS	$O\left(\sqrt{KT\ln(K)}\right)$	
O-TS ⁺	$O\left(\sqrt{KT\ln(T)}\right)$	

Acknowledgements

This work was supported by Alberta Machine Intelligence Institute (Amii), the Canada CIFAR AI Chair Program, and the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants.



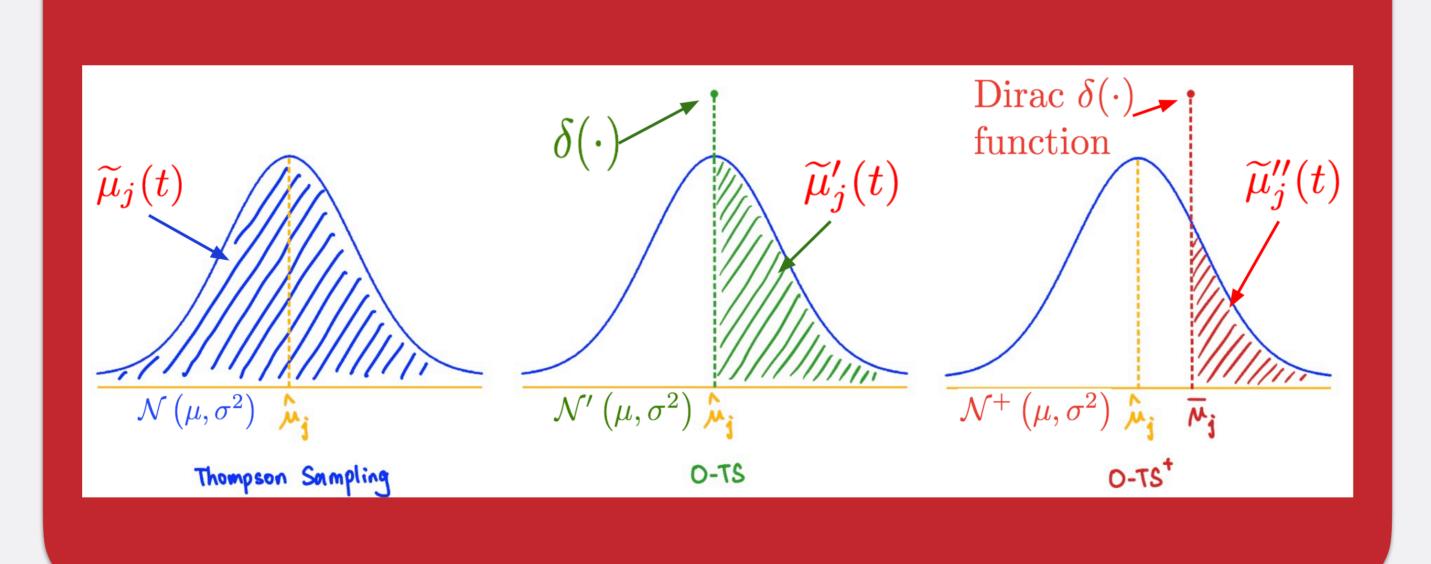
stributions

or samples

 $\arg\max\overline{\mu}_j(t)$ $j \in [K]$ $\arg \max \widetilde{\mu}_j(t)$ $j \in [K]$

Optimistic Thompson Sampling (O-TS)

Sampled parameters are guaranteed to be better than empirical parameters **Reshape posterior distributions** in an optimistic way

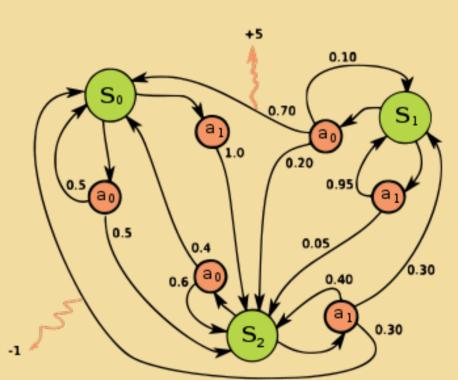


Contributions and Related Work

- O-TS-MDP enjoys an elegant theoretical analysis, avoiding bounding the absolute value of approximation error. O-TS-MDP+ can be viewed as a randomized version of UCB-VI [Azar et al., 2017].
- O-TS for bandits was originally proposed and empirically evaluated in Chapelle and Li [2011], May et al. [2012]. O-TS+ for bandits can be viewed as a randomized version of UCB1 [Auer et al., 2002].

An MDP instance $M = ([S], [A], H, \vec{p}, \mu, T, p_0)$

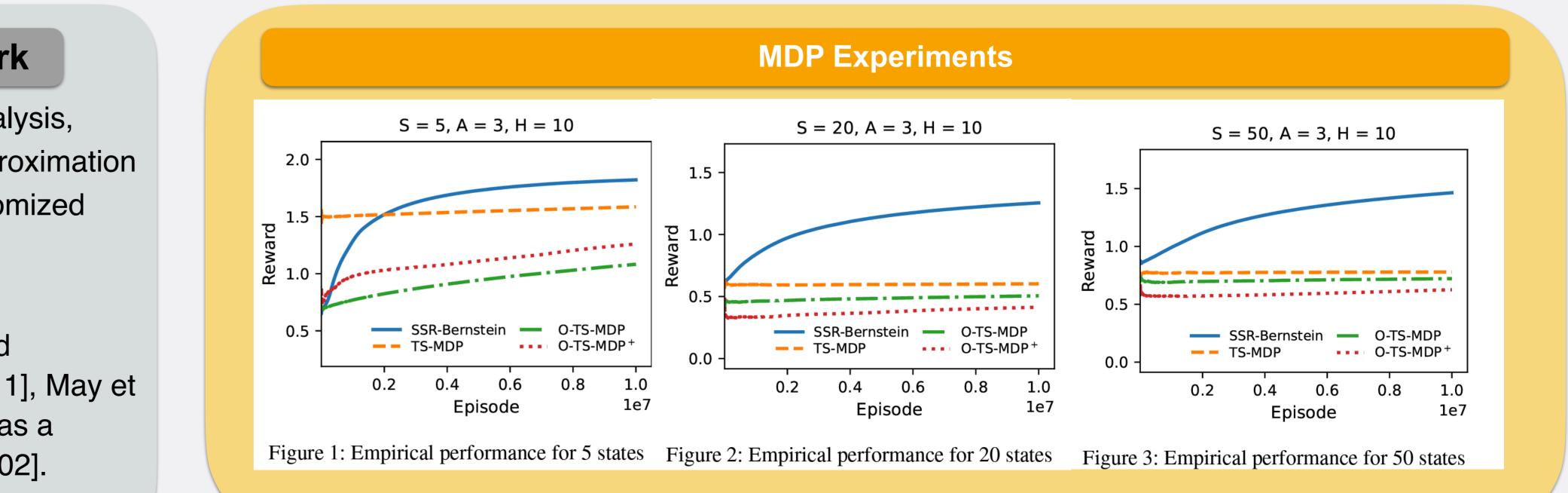
- . $(s, a) \in [S] \times [A]$: state-action pair
- . $\vec{p}_{s,a,t}$: transition probability distribution for (s,a) in round t
- . $\mu_{s,a,t}$: mean reward for (s,a) in round t
- . p_0 : initial state distribution
- H: number of rounds in an episode
- T: number of episodes



Policy $\pi = (\pi(\cdot, 1), \pi(\cdot, 2), \dots, \pi(\cdot, H))$: a sequence of functions, where each $\pi(\cdot, t): \mathcal{S} \to \mathcal{A}$ takes a state s as input and outputs an action a that will be taken in that round tRegret can be expressed as

 V_t^{π} : value function for policy π in round t

O-TS-MDP and O-TS-MDP+							
	MDP Regret Bounds						
UCB-VI	\widetilde{O}	$\left(\sqrt{ASH^3T}\right)$		Model-based: $\overline{\mu}, \widehat{p}$	Deterministic		
RLSVI	$\widetilde{O}\left(\right)$	$\left(\sqrt{AS^2H^4T}\right)$)	Model-free	Randomized		
O-TS-MDP	$\widetilde{O}\left(\right)$	$\sqrt{AS^2H^4T}$)	Model-based: $\widetilde{\mu}', \widehat{p}$	Randomized		
O-TS-MDP ⁺	\widetilde{O}	$\left(\sqrt{ASH^3T}\right)$		Model-based: $\widetilde{\mu}'', \widehat{p}$	Randomized		
		<u>, </u>					



Episodic Markov Decision Processes (MDP)

Goal of learner: /isit a sequence of state-action pairs to accumulate as much reward as possible over *T* episodes (in total *HT*) rounds)

$$\mathcal{R}(T;M) = \sum_{k=1}^{T} \mathbb{E}\left[V_1^{\pi_*}(s_1^k) - V_1^{\pi_k}(s_1^k)\right]$$

Empirical MDP instance: $M_k := ([S], [A], H, \hat{p}_{k-1}, \hat{\mu}_{k-1}, T, p_0)$