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ABOUT ME

| am a research scientist at Google Deepmind working to solve
artificial intelligence. My research focus is on decision making
under uncertainty (a.k.a. reinforcement learning). | want to
design autonomous agents that teach themselves to do well in
any task. If we can do this, then we will be well on our way to

general Al.

| completed my Ph.D. at Stanford University advised by
Benjamin Van Roy. My thesis Deep Exploration via Randomized
Value Functions won second place in the national Dantzig
dissertation award. It takes some steps towards a practical RL
algorithm that combines efficient generalization and
exploration... and I'm still focused on making progress in this

area!

Before coming to Stanford | studied maths at Oxford University
and worked for J.P.Morgan as a credit derivatives strategist. |
spent the summer of 2015 working for Google in Mountain View
and, after a great internship in 2016 joined DeepMind full time in
London. If you want to know more about what I'm thinking check

out my blog.
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Exploration in Bandits




@ Stochastic Multi-arm Bandits

A stochastic MAB instance © := ([K]; p1, o, ..., K )
In every round t =1,2,...,T

1. Environment generates a reward vector | Xq(t),..., X;(t) ,...,Xk(t) | ¢
N~

~Ber(;)
2. Simultaneously, Learner pulls an arm J; € [K] B

3. Environment reveals X, (t); Learner observes and obtains X j, (¢)

Goal: minimize regret (equivalent to maximize reward)

Reward of best arm

—
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Reward of Algorithm
= E [1s — p,
%31 s — pa,]
= Y E[A;] ,where J; is random, p, = max;c(x) pj, and A; = pr, — p;
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= Upper Confidence Bound

Optimism in the face of uncertainty

- Compute the empirical mean of each arm and a confidence interval;
- Use the upper confidence bound as a proxy for goodness of arm.

Algorithm 2 UCB
1: fort=1,2,---,T do

2: Vi € [n], compute the upper confidence bound f;(t) = f; 0,-1) + ‘,_Og_l(fti%

3:  Pull arm i; € arg r_n&[u]( ai(t)
€N
4. Observe reward zf, Bonus term

Hoeffding’s inequality, w.h.p. :

- ~ 31n
Fi,05(t-1) = B3,0;-1) T4/ 7, oy > 13, V5 € [K]

I
|
|
|
[
|
|
: | .
2 endfor . Importance of optimism:
O;(t — 1): Number of times 1
arm ¢ has been pulled I
I Arm pulled in UCB of arm
1 round J pulled in round J
|
= = 31n(t
A b Ay, = e — g, S B0, (t-1) — B S BJ,,04,(-1) — B, = 4/ ﬁt(_)l)
J75 I U2 1
5 I
& ' B e I Best arm UCB of best arm
U3 1 1253 1
|
1 P
31n(t) o
I



E@f Thompson Sampling

‘Randomly take action according to the probability you believe it is the optimal action” - Thompson 1933

An empirical MAB instance © := ([K], 1,0, (¢—1)) f2,05(t—1)5 - - - 7ﬂK,OK(t—1)) 0 i

Data-dependent distributions 6 := [K]; él,Ol(t—l),éZOg(t—l)y wors OB a1 )

where each 0, 0, (;—1) =N (ﬂj,oj(t—n, 0331(+(_t)1))

T=t

-

A sampled MAB instance 0 := (K B o oo 5 Rc)

where each fij ~ 0;0,(-1) = fije ~ N (ﬂj,oj(t—n’ 3,'1(2(—”1))

Standard T'S: behave greedy in (5, pull J; <~ max;c (k) i),

T=t’ 0{




Proof Sketch

Use two events to split up the expectation:

. Ef(t) - the event that the sampled parameter is far from y; Posterior deviation

. Ef(t) - the event that the estimated mean /i; is from from y; | Empirical deviation

B () == {; <%}

i Yi
| i
0 1
”é H

We’'ll show that...

2 Bounded by linear
E[k:(T)] = ZPI’(Z Z (i(t) =1 -, E2(t)) 4—-—« function prob of
t=1 playing
XT: - (t) 5 Rare once mean
. is concentrated
Number of times t=1

arm i is pulled L _ n Q _ Rare (using
Z ( =45 (t)) : Chernoff)



Exploration in MDPs




[y MDP

Markov Decision Processes (MDPs) provide a framework for
modelling sequential decision making, where the environment
has different states which change over time as a result of the
agent’s actions.

- Alearning agent draws a trajectory (a sequence of
state-action pairs) and try to maximize cumulative reward

- Bandit can be viewed as an MDP with one state and K
actions.

Unknown
Environment

Observations

A ™

Reward

Action

\ Transition Probabilit
,,f

Observation Probability

* Bandit Problem

- MDP

+ POMDP



@} Least Square Value lteration

Adapting value-iteration with imperfect statistical knowledge and limited compute.

Algorithm 2 vi

Input: M=(S,A,R,P,p) MDP

HeN planning horizon

Output: Qj; optimal value function for H-period problem

15 QS <0

2: for hin (0,...,H-1) do
3: | Q.1(s,a) <« Yyes Psals) (/ TR a5 (dr) + maxges Q; (s, a’)) Vs,aeSx A
4

: return Qj;

.. . 2
Empirical temporal difference loss: £(6;6-,p) = 3 ('r’t+n}ajt( Q- (s, a') - Qg(st,at))

teD

Regularized towards prior:  R(6;67) = 5167 - 63,

Algorithm 3 learn 1svi
Agent: L(0=-;0"=-,D=-) TD error loss function

R(O=-;6P=-) regularization function
buffer memory buffer of observations
prior prior distribution of 6
HeN planning horizon
Updates: 6 agent value function estimate
: 0~0 <« n}xll

: Data D « buffer.data()

: Prior parameter 6? « prior.mean()

: for hin (0,...,H-1) do

‘ Op41 < argmin (,C(H;éh,ﬁ) + ’R,(O;ép))
OcRP

P

6: update value function estimate 0« 0




@ Randomized LSVI

Key idea: replace least square computation with an alternative value iteration that trains on randomly

perturbed version of the data

- Consider conventional linear regression:

Let R, prior N(0,\I) and data D={(z;,y;)};_,
for y; =0T x;+¢; with ¢;~N(0,0?) iid. Then, con-
ditioned on D, the posterior for 6 is Gaussian:

1 1\ /1 1-

Cov[0|D]:<%XTX+§I>_ . 1)

Relies on Gaussian conjugacy and linear models,

which cannot easily be extended to deep NN

Lemma 1 (Computational posterior samples).
Let fo(x) = 270, §; ~ N(y;,0%) and 6 ~ N (6, \I).
Then either of the following optimization prob-
lems generate a sample 6| D accordlng to (1):

argmanHyz fo(x:) ||2‘|'

1= 1

9+argm1nZ||yz

=1
Proof. Note output is Gaussian, match moments. [

(1) @B+ %013 ®)

Computationally tractable approximate posterior, drive
deep exploration via randomized value functions.



@ Algorithm

Algorithm 1: RLSVI for Tabular, Finite Horizon, MDPs
input :H, S, A, tuning parameters {5} }ren

for episodes k = 1,2, ... do
/* Define squared temporal difference error */

L(Q | Quexts D) = T4 0. sep (Q(5,0) — 7 — maXare 4 Quext (', @) ; e | eagst square regression

Dy = {(sf,, o}, 7f, 55,1) : £ < k} h<H; /* Past data */

Dir={l8%,05,175,0) 1 < k)

/* Randomly perturb data */

for time periods h =1,..., H do

Sampleiarray:(, s.(0, Bp1)s {8 Doy PO iRt Draw noise from gaussian

Dh < {},

for (s,a,r,s') € Dy, do
sample w ~ N (0, B1); Perturb dataset with noisy reward
Dy« Dy {(s,a,7 +w,s")};

end -

end

/* Estimate @ on noisy data

*/ . .
Define terminal value Q% ;(s,a) - 0 Vs, a; — ComDUte Q function on noisy data
for tt;me periodsh =H,...,1do

| Qn + argmingegsa £(Q | Qni1,Dn) + 1Q — Qull3;
end

Appl dy policy with tto (Qy,...Qy) throughout episode; .
pply gree yponcyV\I/cl resEecko(le, Q) throughout episode Run greedlly

Observe data s'f,a’f,rl,. S, A, TS

end




¥ Deep Exploration Intuition

Consider a simple MDP with 4 stats, 2 actions

Suppose we are highly uncertain about state-action pair (4, down), but are pretty sure about others.

h=6 h—5 h=4 h=3 h=2 h=1

AAAAL

§=

14
s=2 < -

$=3

\
t 4,

< %
AA
4



Regret Analysis




[ Finite-horizon Time-inhomogeneous MDP

Assumption 2 (Finite-horizon time-inhomogeneous MDP).
The state space factorizes as S = So US1 U Sy U---USy_1 where |Sp| = - = |Sy_1| < c0. For
any MDP M = (S’A)Rapvp);

> Paa(s) =1 Vte{0,...,.H-2},5€8;,ac A,

s'€St41

and

Z Psal(s) =0 VseSH-i,acA

s'eS

Each state s € S; can be written as a pair s = (¢,z) where t € {0,...., H -1} and z € X =
{1,...,|So|}. Similarly, a policy 7 : S - A can be viewed as a sequence 7 = (7, ..., TH-1)
where 7y : x > w((t,2)). Our notation can be specialized to this time-inhomogenous prob-
lem, writing transition probabilities as Pz q(2") = P(1.4),o((t + 1,2")) and reward probabil-
ities as Ryt z,0,2/(7) = R(t,2),a,(t+1,2) (7). For consistency, we also use different notation for
the optimal value function, writing

Vi (e) = Vi (8 2))

and define V;/t,t (z) = max, V/Ct,t (z). Similarly, we can define the state-action value function
under the MDP at timestep ¢ € {0,..., H — 1} by

Qj\/l,t(waa) =E[ren + V/tz,t+1($t+1) | M,z =z, 0 =a] VexeX,ace A




@y Bayesian Regret Bound

Average over distribution Value of

optimal policy

. V-

* 7Te
Regret(M,alg, L) = ZEM,alg [V (36) -V (36))]
/=1

BayesRegret(alg, L) = E [Regret(M,alg, L)] .

Regret / L should converge to 0

For |So| = ... = |Sm1|=|X]

BayesRegret(RLSVIy, ,,L) < 6H?\/B|X||A|Lflog, (1 + |X||A|HL) log, (1 +

)
(XAl

RLSVI requires a number of episodes that is just linear in the number of states to reach near optimal
performance.




Regret Decomposition

(Hiding a lot of details...)

Algorithm’s
Optimal estimate value True expected
/ value of 1T

Vio(T) = Vigo(z) = (Igg Qi o(z,a) - max Qo(z, a)) + (Igg Qo(z,a) - Vf&,o(w))

= maXged Q) 0(T,a) —maxges Qo(z,a) (pessimism of Q)

+ Epmr [Zﬁal(Qt — Fa Q1) (x4, a¢) | o = x] (on policy Bellman error)

Bellman Operator

If the function Qg is optimistic at an initial state z, in the sense that max, Qo(x,a) >
max, Q' o(7,a), then regret in the episode is bounded by on policy Bellman error under

(QO) 7QH)



@} Stochastic Optimism

Assumption 3 (Independent Dirichlet prior for outcomes).
Rewards take values in {0,1} and so the cardinality of the outcome space is | X x{0,1}| = 2| X|.
For each, (t,z,a) €{0,..., H-2} x X x A, the outcome distribution is drawn from a Dirichlet

prior

2|x . . i
for aptz.a € R+| | and each 'Ptoza is drawn independently across (t,x,a). Assume there is

PPy.a(-) ~ Dirichlet(ag ¢.z.q)

\° [E=060.50.50)

CEIEERERE)|

B >3 such that ]lTao,t,a,x =B for all (t,z,a).
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(d) Difference in CDFs D(s) = G(s) - F(s)

Definition 2 (Stochastic optimism).
A random wvariable X is stochastically optimistic with respect to another random variable
Y, written X >50 Y, if for all convez increasing functions u: R - R

(6.7) E[u(X)] > E[u(Y)].

Lemma 4 (Gaussian vs Dirichlet optimism).
Let Y = PTV for V e R" fired and P ~ Dirichlet(a) with o € R? and Y7,y > 3. Let
X ~ N(p,0%) with p> Z2% 62> 3(5 a;) 7 Span(V)?, then X =50 Y.

Bellman operator underlying RLSVI is stochastically optimistic relative
to the true Bellman operator




@ Bellman Error

Expirical Bellman
Update

(v/A)0 +ng(y)VIPE,

(6.4) )~ )

+wy(y) Vy = (t,z,a).

By equation (6.4), we find

BN+ Ve oo

Fp1Q(x,a) - E[Fp:Q(x, a)|7—£g_1,:v€, af, . xf, af] < + wg(y)l
B +ne(y)
By Gaussian maximal inequality:
Corollary 3. For eacht < H and ¢ < L
E[we(t, 2, ar)] < /2 log (A X E[oe(t, zt, a)?]. Bounding noise term

Corollary 4. If RLSVI is applied with parameters (\,v,0) with v/\=£>3 , v=3H? and

¢ Bounding norm of value
6=HI,

function sampled by RLSVI

2
< 3
B[, max [V, le] < 2H + H V2log(1 + |X||A|HL)



Practical Variants/Experiments




Practical Variants

Algorithm 8 learn ensemble rlsvi

Finite buffer experience replay Agent: éh - ‘?K ensemble parameter estimates
0755 0 prior samples of parameter estimates
i i ; Ly(0=-;0"=-,D=-) TD error loss function
Discount factor approximating 75( PV regularizotion fanction
effective planning horizon ensemble buffer  replay buffer of K-parallel perturbed data
«a Learning rate
Incremental parameter update with Updates: 0 agent value function estimate

1: for kin (1,...,K) do

2 Data Dy « ensemble buffer[k].sample minibatch()
3: § < buffer.minibatch size / buffer.size
4

ék « ék — avelezgk (£7(0;9~k,ﬁk) +R(0; éi))
update 6 « 9~j for j ~ Unif(1,..,K)

(batch) gradient descent

Ensemble sampling

A

Learner 1
Learner 2

Observation Buffer Learner Policy Observation Policy
Buffer K Learner K

Environment Environment

(a) learning a single value function (b) learning multiple value functions in parallel



@ Tabular: DeepSea

Q

e

r={0 |r=1001/N

Environment description:

State space = N x N grid.

Begin top left, fall one row each step.
Actions “left” or “right” vary per state.
Big reward +1 in chest.

Small cost -0.1/N for moving “right”.

O O O O O

1 policy > 0, 1 policy = 0, all others < 0.
. “a piece of hay in a needle-stack”

No deep exploration — 2" episodes to learn.

‘Time to learn’ := #episodes until AveRegret < 0.9.

o c-greedy = DQN with annealing dithering.

e BS = BootDQN without explicit prior.

e BSR = BootDQN with regularize ||0x — 01"].
e BSP = BootDQN with prior, Qr = fo, + Dk-

egreedy [ BS BSR BSP
500000 4 - | B —
£ 400000 ‘ :
-] | i success
2 300000 - } o all 5 seeds
9
‘; 200000 A | some seeds
|
g .
ﬁ 100000 ; ; ] ] p - no seeds
: N
0 | ctt® 1 s ———d’ AN o
20 40 60 20 40 60 20 40 60 20 40 60

Problem scale N

Figure 3: Only BSP scales to large problems. Plotting
log-log suggests an empirical scaling Ticarn = O(N?).



f Deep Learning: Cart-Pole Swing Up

Agent begins each episode with the pole hanging down
and has to learn to swing it up.

Reward structure requires deep exploration:

e Agent pays a cost for any action
e Gets reward if pole is balanced up right

800
0

] 2 600+
— ©
IS =
Z 20 5}
2 . ) o network
o annealing episodes 3 il
E =y g 0 50-MLP
& 0 {1000 5 =
& g 2000 % == 50-50-MLP
g © 2004
] [}
2 >
o ©

-60

0 L
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
episode episode

Figure 16: DQN with e-greedy exploration simply learns to stay motionless. Figure 17: RLSVI with 2-layer neural network is able to learn a near-optimal policy.


http://www.youtube.com/watch?v=ia72VyW5MfI

Thanks for listening!

And happy to hear any questions and feedbacks :)




