# **Probabilistic Topic Models**

Reza Soltani, Helen Zhang

## Structure

- Latent Semantic Analysis (LSA)
- Topic Models
- Latent Dirichlet Allocation (LDA)
- Algorithm for Extracting Topics (Gibbs sampling)
- Polysemy with Topics
- Computing Similarities between Documents or between Words
- Canvas Questions Discussion

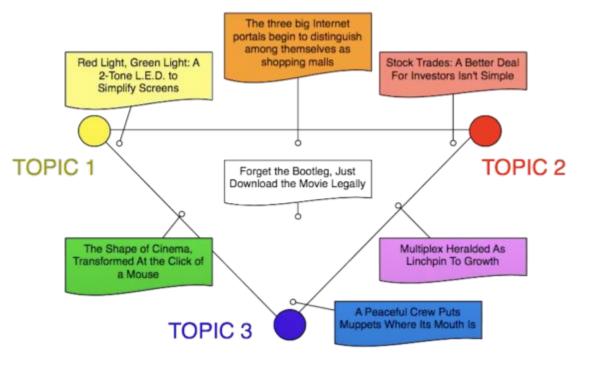
## Latent Semantic Analysis (LSA)

Statistical method that can be applied to large databases and yield insight into words and documents.

- 1. Semantic information can be derived from a **word-document co-occurrence** matrix.
- 2. Dimensionality reduction is an essential part of this derivation.
- 3. Words and documents can be represented as points in Euclidean space.

## **Topic Models**

 Documents are the mixtures of different topics.



## **Topic Models**

- A topic is a probability distribution over words
- Each topic is individually interpretable

| Topic 247 |       | Topic 5 |       |   | Topic 43   |       | Topic 56  |       |
|-----------|-------|---------|-------|---|------------|-------|-----------|-------|
| word      | prob. | word    | prob. | П | word       | prob. | word      | prob. |
| DRUGS     | .069  | RED     | .202  | н | MIND       | .081  | DOCTOR    | .074  |
| DRUG      | .060  | BLUE    | .099  | Ш | THOUGHT    | .066  | DR.       | .063  |
| MEDICINE  | .027  | GREEN   | .096  | Ш | REMEMBER   | .064  | PATIENT   | .061  |
| EFFECTS   | .026  | YELLOW  | .073  | Ш | MEMORY     | .037  | HOSPITAL  | .049  |
| BODY      | .023  | WHITE   | .048  | Ш | THINKING   | .030  | CARE      | .046  |
| MEDICINES | .019  | COLOR   | .048  | Ш | PROFESSOR  | .028  | MEDICAL   | .042  |
| PAIN      | .016  | BRIGHT  | .030  | Ш | FELT       | .025  | NURSE     | .031  |
| PERSON    | .016  | COLORS  | .029  | Ш | REMEMBERED | .022  | PATIENTS  | .029  |
| MARIJUANA | .014  | ORANGE  | .027  | Ш | THOUGHTS   | .020  | DOCTORS   | .028  |
| LABEL     | .012  | BROWN   | .027  | Ш | FORGOTTEN  | .020  | HEALTH    | .025  |
| ALCOHOL   | .012  | PINK    | .017  | Ш | MOMENT     | .020  | MEDICINE  | .017  |
| DANGEROUS | .011  | LOOK    | .017  | Ш | THINK      | .019  | NURSING   | .017  |
| ABUSE     | .009  | BLACK   | .016  | Ш | THING      | .016  | DENTAL    | .015  |
| EFFECT    | .009  | PURPLE  | .015  | П | WONDER     | .014  | NURSES    | .013  |
| KNOWN     | .008  | CROSS   | .011  |   | FORGET     | .012  | PHYSICIAN | .012  |
| PILLS     | .008  | COLORED | .009  | н | RECALL     | .012  | HOSPITALS | .011  |

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

#### **Generative Model**

PROBABILISTIC GENERATIVE PROCESS

STATISTICAL INFERENCE

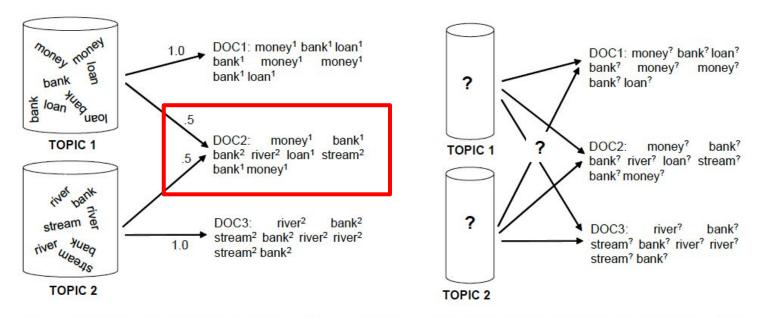


Figure 2. Illustration of the generative process and the problem of statistical inference underlying topic models

#### Words Order

- Integrating Topics and Syntax (Griffiths, Steyvers, Blei, and Tenenbaum 2005)
  - Combining syntactic and semantic generative models

• Topic Segmentation with An Ordering-Based Topic Model (Lan Du, John K Pate and Mark Johnson 2019)

#### **Probabilistic Topic Models**

•  $\theta^{(d)} = P(z)$  refer to the **multinomial** distribution over topics for document d

•  $\phi^{(j)} = P(w | z=j)$  refer to the **multinomial** distribution over words given topic j

• Distribution over words within a document:

$$P(w_i) = \sum_{j=1}^{T} P(w_i | z_i = j) P(z_i = j)$$

• T is the number of topics

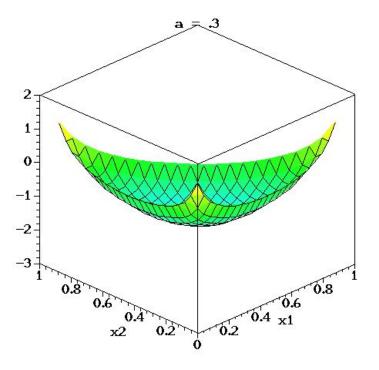
#### **Dirichlet Distribution**

$$\operatorname{Dir}(\alpha_1,...,\alpha_T) = \frac{\Gamma\left(\sum_j \alpha_j\right)}{\prod_j \Gamma\left(\alpha_j\right)} \prod_{j=1}^T p_j^{\alpha_j - 1}$$

- $\Gamma$  is the extension of the factorial function to complex numbers.
- Dirichlet distribution is the **conjugate prior** of the multinomial distribution.
- Smoothing by symmetric Dirichlet distribution with a single hyperparameter  $\alpha$

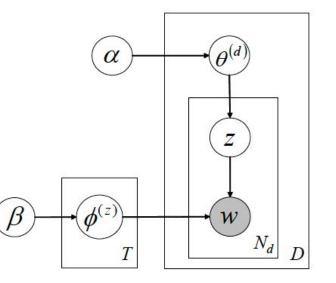
#### How Dirichlet Distribution Helps?

- In practice,  $\alpha < 1$  is used.
- Pressure to pick topic distributions favoring just a few topics.
- And each topic favoring a few words.



#### LDA: Graphical model

- w in the only observed variable
- variable in the lower right corner referring to the number of samples



#### LDA: Geometric Interpretation

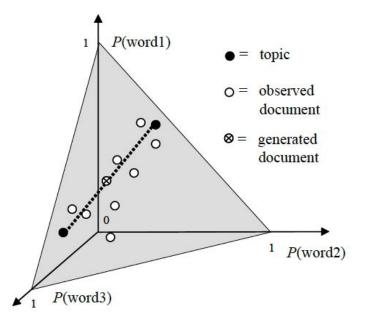
W = number of distinct words in vocabulary

T = number of topics

Any distribution over words can be represented as a point in the W-1 dimensional simplex (generalization of triangle).

Topics and documents can be represented over this simplex.

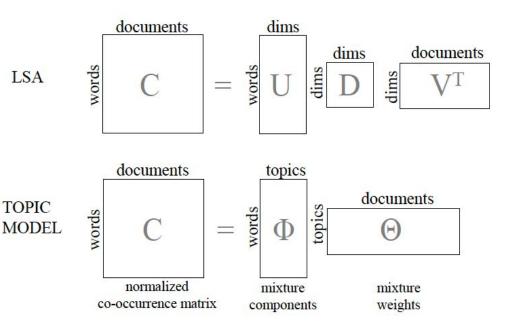
Topics spans a low-dimensional subsimplex and the projection of documents onto this subsimplex is a reduction in dimensionality.





### **Matrix Factorization**

- LSA and topic models both of find a low-dimensional representation for the content of a set of documents.
- Matrix D can be absorbed in V or U to make the similarity more clear.
- In topic model, feature values are non-negative and sum up to one.

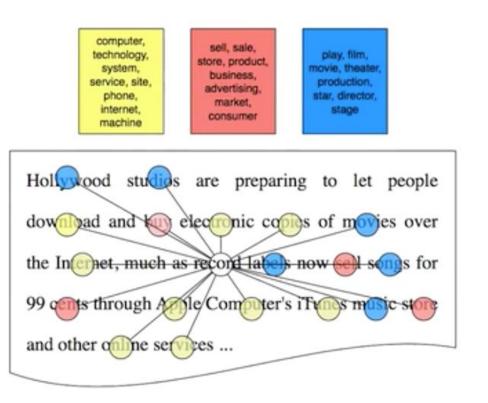


## Algorithm for Extracting Topics

- Directly estimating the topic-word distributions  $\phi$  and the topic distributions  $\theta$ 
  - Expectation-maximization (Hofmann, 1999) : suffers from local maxima of the likelihood function
- Estimate the posterior distribution over z, the assignment of word tokens to topics, given the observed words w
  - Text collections contain millions of word token, the estimation of the posterior over z requires efficient estimation procedures.
  - Gibbs sampling:
    - Easy to implement, relatively efficient for extracting a set of topics from a large corpus
    - Simulates a high-dimensional distribution by sampling on lower-dimensional subsets of variables

## **Gibbs Sampling Intuition**

- Considers each word token in the text collection in turn
- Estimates the probability of assigning the current word token to each topic, conditioned on the topic assignments to all other word tokens.
- Initialize randomly
- Sample sequentially until the values approximate target distribution



### **Gibbs Sampling Equation**

$$P(z_{i} = j | \mathbf{z}_{-i}, w_{i}, d_{i}, \cdot) \propto \frac{C_{w_{i}j}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \frac{C_{d_{i}j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_{i}t}^{DT} + T\alpha}$$

- Words are assigned to topics depending on <u>how likely the word is for a topic</u>, as well as <u>how dominant a topic is in a document</u>
- $C_{wj}^{WT}$  number of times word w is assigned to topic j
- $C_{dj}^{DT}$  number of times topic j is assigned to some word token in document d
- $\alpha$ ,  $\beta$  hyperparameters, smoothing
- Estimating  $\varphi$  and  $\theta$ :

$$\phi'_{i}^{(j)} = \frac{C_{ij}^{WT} + \beta}{\sum_{k=1}^{W} C_{kj}^{WT} + W\beta} \qquad \qquad \theta'_{j}^{(d)} = \frac{C_{dj}^{DT} + \alpha}{\sum_{k=1}^{T} C_{dk}^{DT} + T\alpha}$$

## Example

Generate artificial data from a known topic model:

$$\phi_{MONEY}^{(1)} = \phi_{LOAN}^{(1)} = \phi_{BANK}^{(1)} = 1/3$$
  
$$\phi_{RIVER}^{(2)} = \phi_{STREAM}^{(2)} = \phi_{BANK}^{(2)} = 1/3$$

Randomly assign topics at the start, perform gibbs sampling after 64 internations:

$$\phi'^{(1)}_{MONEY} = .32, \quad \phi'^{(1)}_{LOAN} = .29, \quad \phi'^{(1)}_{BANK} = .39$$

$$\phi'^{(2)}_{RIVER} = .25, \quad \phi'^{(2)}_{STREAM} = .4, \quad \phi'^{(2)}_{BANK} = .35$$

|    | River  | Stream   | Bank      | Money   | Loan           |
|----|--------|----------|-----------|---------|----------------|
| 1  |        |          | 0000      | 000000  | <b>6000</b> 00 |
| 2  |        | i        | 00000     | 0000000 | i ●00●         |
| 3  |        |          | 00000000  | 00000   | 0000           |
| 4  |        |          | 0000000   | 0000000 | 000            |
| 56 |        | Ì        |           | I ●O    | 0000000        |
| 6  |        |          | 000000000 | 000     | 0000           |
| 7  | 0      | l<br>I   | 0000      | 000000  | 00000          |
| 8  | •      | 0        | 000000    | 0000    | <b>60</b> 0    |
| 9  | •      | 000      | 000000    | 0000    | 0              |
| 10 | 0      |          | 000000    | i 🔴     | 000            |
| 11 | 0      | 000      | 00000000  |         | •              |
| 12 | 000    | 0000000  | 000000    | 0       | 1 -            |
| 13 | 000000 | 000      | 000000    | 1       | 0              |
| 14 | 00     | 00000000 | 000000    | 1       |                |
| 15 | 0000   |          | 00000     | i       | i.             |
| 16 | 00000  |          | 0000      | 1       | L              |

|                      | River                                  | Stream  | Bank    | Money | Loan |
|----------------------|----------------------------------------|---------|---------|-------|------|
| 12345678             | 0                                      |         |         |       |      |
| 9                    | 0                                      | 000     | 000000  |       |      |
| 10<br>11<br>12       | 00<br>00<br>000                        | 000     | 0000000 | •     | •••• |
| 13<br>14<br>15<br>16 | 000<br>000000<br>000<br>00000<br>00000 | 0000000 |         | •     | •    |

Figure 7. An example of the Gibbs sampling procedure.

## Exchangeability of topics

- There is no a priori ordering on the topics that will make the topics identifiable between or even within runs of the algorithm. Therefore, the different samples *cannot* be averaged at the level of topics.
- When topics are used to calculate a statistic which is invariant to the ordering of the topics, it is important to average over different Gibbs samples to improve results
- Model averaging is likely to improve results because it allows sampling from multiple local modes of the posterior.

## Stability

• The solutions from different samples will give different results but that many topics are stable across runs.

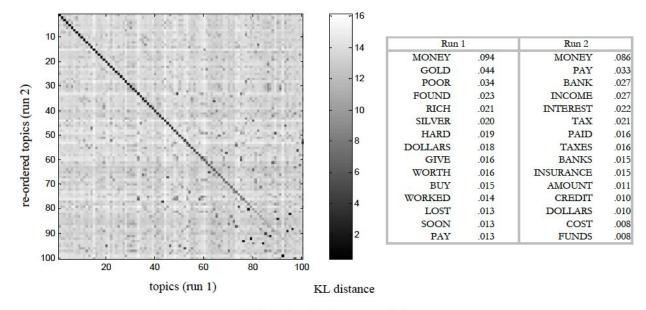


Figure 8. Stability of topics between different runs.

## Number of Topics

A solution with too few topics will generally result in very broad topics whereas a solution with too many topics will result in uninterpretable topics

- Bayesian model selection:
  - Estimate the posterior probability of the model while integrating over all possible parameter settings (i.e., all ways to assign words to topics)
  - Choose the number of topic that leads to the highest posterior probability.
- Best generalization performance
  - A topic model estimated on a subset of documents should be able to predict word choice in the remaining set of documents
- Non-parametric Bayesian statistics
  - Automatically select number of topics

## Polysemy with Topics

 Probabilistic topic models represent semantic ambiguity through uncertainty over topics Topic 77 Topic 82 Topic 166

| opic // |       | Tople 02    |       | Tople 100 |       |
|---------|-------|-------------|-------|-----------|-------|
| word    | prob. | word        | prob. | word      | prob. |
| MUSIC   | .090  | LITERATURE  | .031  | PLAY      | .136  |
| DANCE   | .034  | POEM        | .028  | BALL      | .129  |
| SONG    | .033  | POETRY      | .027  | GAME      | .065  |
| PLAY    | .030  | POET        | .020  | PLAYING   | .042  |
| SING    | .026  | PLAYS       | .019  | HIT       | .032  |
| SINGING | .026  | POEMS       | .019  | PLAYED    | .031  |
| BAND    | .026  | PLAY        | .015  | BASEBALL  | .027  |
| PLAYED  | .023  | LITERARY    | .013  | GAMES     | .025  |
| SANG    | .022  | WRITERS     | .013  | BAT       | .019  |
| SONGS   | .021  | DRAMA       | .012  | RUN       | .019  |
| DANCING | .020  | WROTE       | .012  | THROW     | .016  |
| PIANO   | .017  | POETS       | .011  | BALLS     | .015  |
| PLAYING | .016  | WRITER      | .011  | TENNIS    | .011  |
| RHYTHM  | .015  | SHAKESPEARE | .010  | HOME      | .010  |
| ALBERT  | .013  | WRITTEN     | .009  | CATCH     | .010  |
| MUSICAL | .013  | STAGE       | .009  | FIELD     | .010  |
|         |       |             |       |           |       |

• Iterative sampling: the assignment of each word token to a topic depends on the assignments of the other words in the context.

#### Document #29795

Bix beiderbecke, at age<sup>060</sup> fifteen<sup>207</sup>, sat<sup>174</sup> on the slope<sup>071</sup> of a bluff<sup>055</sup> overlooking<sup>027</sup> the mississippi<sup>137</sup> river<sup>137</sup>. He was listening<sup>077</sup> to music<sup>077</sup> coming<sup>009</sup> from a passing<sup>043</sup> riverboat. The music<sup>077</sup> had already captured<sup>006</sup> his heart<sup>157</sup> as well as his ear<sup>119</sup>. It was jazz<sup>077</sup>. Bix beiderbecke had already had music<sup>077</sup> lessons<sup>077</sup>. He showed<sup>002</sup> promise<sup>134</sup> on the piano<sup>077</sup>, and his parents<sup>035</sup> hoped<sup>268</sup> he might consider<sup>118</sup> becoming a concert<sup>077</sup> pianist<sup>077</sup>. But bix was interested<sup>268</sup> in another kind<sup>050</sup> of music<sup>077</sup>. He wanted<sup>268</sup> to play<sup>077</sup> the cornet. And he wanted<sup>268</sup> to play<sup>077</sup>.

#### Document #1883

There is a simple<sup>050</sup> reason<sup>106</sup> why there are so few periods<sup>078</sup> of really great theater<sup>082</sup> in our whole western<sup>046</sup> world. Too many things<sup>300</sup> have to come right at the very same time. The dramatists must have the right actors<sup>082</sup>, the actors<sup>082</sup> must have the right playhouses, the playhouses must have the right audiences<sup>082</sup>. We must remember<sup>288</sup> that plays<sup>082</sup> exist<sup>143</sup> to be performed<sup>077</sup>, not merely<sup>050</sup> to be read<sup>254</sup>. (even when you read<sup>254</sup> a play<sup>082</sup> to yourself, try<sup>288</sup> to perform<sup>062</sup> it, to put<sup>174</sup> it on a stage<sup>078</sup>, as you go along.) as soon<sup>028</sup> as a play<sup>082</sup> has to be performed<sup>082</sup>, then some kind<sup>126</sup> of theatrical<sup>082</sup>...

#### Document #21359

Jim<sup>296</sup> has a game<sup>166</sup> book<sup>254</sup>. Jim<sup>296</sup> reads<sup>254</sup> the book<sup>254</sup>. Jim<sup>296</sup> sees<sup>081</sup> a game<sup>166</sup> for one. Jim<sup>296</sup> plays<sup>166</sup> the game<sup>166</sup>. Jim<sup>296</sup> likes<sup>081</sup> the game<sup>166</sup> for one. The game<sup>166</sup> book<sup>254</sup> helps<sup>081</sup> jim<sup>296</sup>. Don<sup>180</sup> comes<sup>040</sup> into the house<sup>038</sup>. Don<sup>180</sup> and jim<sup>296</sup> read<sup>254</sup> the game<sup>166</sup> book<sup>254</sup>. The boys<sup>020</sup> see a game<sup>166</sup> for two. The two boys<sup>020</sup> play<sup>166</sup> the game<sup>166</sup>. The boys<sup>020</sup> play<sup>166</sup> the game<sup>166</sup> for two. The boys<sup>020</sup> like the game<sup>166</sup>. Meg<sup>282</sup> comes<sup>040</sup> into the house<sup>282</sup>. Meg<sup>282</sup> and don<sup>180</sup> and jim<sup>296</sup> read<sup>254</sup> the book<sup>254</sup>. They see a game<sup>166</sup> for three. Meg<sup>282</sup> and don<sup>180</sup> and jim<sup>296</sup> play<sup>166</sup> the game<sup>166</sup>. They play<sup>166</sup>...

#### Similarities between documents

- The similarity between documents d1 and d2 can be measured by the similarity between their corresponding topic distributions
- Distribution similarity function: Kullback Leibler (KL) divergence

$$D(p,q) = \sum_{j=1}^{T} p_j \log_2 \frac{p_j}{q_j}$$

- Equal to zero when for all j, pj = qj
- Symmetric measure based on KL divergence:

$$KL(p,q) = \frac{1}{2} \left[ D(p,q) + D(q,p) \right]$$

• Jensen-Shannon (JS) divergence:

$$JS(p,q) = \frac{1}{2} \Big[ D(p,(p+q)/2) + D(q,(p+q)/2) \Big]$$

#### Similarities between documents

- Find similar documents to the given document (information retrieval application)
  - Assess the similarity between the topic distributions
  - Model information retrieval as a probabilistic query to the topic model

$$P(q \mid d_i) = \prod_{w_k \in q} P(w_k \mid d_i)$$
  
= 
$$\prod_{w_k \in q} \sum_{j=1}^T P(w_k \mid z = j) P(z = j \mid d_i)$$

- Important to obtain stable estimates for the topic distributions
  - Average the similarity function over multiple Gibbs samples

#### Similarity between words

- Measured by the extent that two words share the same topics
  - Similarity between conditional topic distributions for two words w1 and w2

$$\theta^{(1)} = P(z \mid w_i = w_1) \text{ and } \theta^{(2)} = P(z \mid w_i = w_2)$$

- Measured by symmetrized KL or JS distance
- Associative relations between words

$$P(w_2 | w_1) = \sum_{j=1}^{T} P(w_2 | z = j) P(z = j | w_1)$$

| HUMANS |      | TOPICS   |      |
|--------|------|----------|------|
| FUN    | .141 | BALL     | .036 |
| BALL   | .134 | GAME     | .024 |
| GAME   | .074 | CHILDREN | .016 |
| WORK   | .067 | TEAM     | .011 |
| GROUND | .060 | WANT     | .010 |
| MATE   | .027 | MUSIC    | .010 |
| CHILD  | .020 | SHOW     | .009 |
| ENJOY  | .020 | HIT      | .009 |
| WIN    | .020 | CHILD    | .008 |
| ACTOR  | .013 | BASEBALL | .008 |
| FIGHT  | .013 | GAMES    | .007 |
| HORSE  | .013 | FUN      | .007 |
| KID    | .013 | STAGE    | .007 |
| MUSIC  | .013 | FIELD    | .006 |

Figure 9. Observed and predicted response distributions for the word PLAY.

The balance between the influence of <u>word frequency</u> and <u>semantic relatedness</u> found by the topic model can result in better performance than LSA on this task.

- Why are the Gibbs samples poor estimates of the posterior during the initial stage of the sampling process (burn-in period)?
  - Random initialization
  - Ignore samples at the beginning, keeping every kth sample, averaging ...
- How to determine how many iterations you would run for the Gibbs Sampling algorithm? Efficiency (time consumption) of Gibbs Sampling?
  - Guaranteed to converge. A good initialization might help?

- Downside of Gibbs Sampling?
  - 1. Long convergence time especially with the dimensionality of the data growing.
  - 2. Convergence time also depends on the shape of the distribution. When there are islands of high-probability states with no paths between them, Gibbs sampling will become trapped in one of the two high-probability vectors, and will never reach the other one.

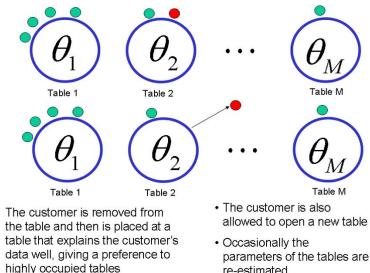
- What is the difference between exchangeability and stability of topics? Exchangeability: Does topics have same ordering, between or within runs
  Stability: Does same topics reappear across different runs
- Some of the topics are unstable across runs, what is the reason behind it? Sampling
- Why is it more important to average over different Gibbs samples when topics are used to calculate a statistic which is invariant to the ordering of the topics?

Allows sampling from multiple local modes of the posterior.

- Considering that automatic mechanisms do not meet the users' needs in advance. What strategies can be helpful in those cases? Is hierarchical topic modeling a good approach?
- Is there any preferred/best method for determining the Number of Topics?

**Bayesian** Nonparametrics

Chinese Restaurant Process (Dirichlet Process) Ο



re-estimated

Chinese Restaurant Process Gibbs Sampler

- KL vs JS: Is one approach better than the other? Can anything be said about the assumptions/performance of these approaches? What other topic similarity metrics exist?
  - KL is not symmetric, which can be a feature in some applications
  - It is also possible to consider the topic distributions as vectors and apply geometrically motivated functions such as Euclidean distance, dot product or cosine.

- How are topic models evaluated?
  - Likelihood of held-out data
    - Since they are probabilistic models, likelihood of a new document can be calculated.
  - Word intrusion
    - Insert one random word inside and ask humans to identify the random word.

- What are some algorithms for extracting topics not mentioned in the paper? Is the state-of-the-art any of the mentioned approaches?
  - Latent Dirichlet Allocation
  - Gibbs Sampling
  - Variational Inference: Minimizes KL(q||p) where q is a simpler graphical model than the original p
  - Structural Topic Model (STM) : Incorporates metadata into the model and uncover how different documents might talk about the same underlying topic using different word choices.