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Vanilla Thompson Sampling Revisited
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Motivation Challenge: Exploitation vs Exploration Trade-Off
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In every round t =1,2,...,T
1. Environment generates a reward vector | Xi(t),..., X;(t) ,...,Xk(t) Exploitation Exploration
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2. Simultaneously, Learner pulls an arm J; € [K] Objective
3. Environment reveals X ;,(¢); Learner observes and obtains X, (%) @
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Goal: pull arms sequentially to maximize cumulative reward
When the posterior distribution of the optimal arm is not concentrated,

T
Regret: R(T;0) =E lz (m% Wi — Wt)] that is, the optimal arm has not been sufficiently observed,
—_— E ]
=Y What is the the expected number of rounds needed

before the optimal arm has a good posterior sample?

Vanilla Thompson Sampling

‘Randomly take action according to the probability you believe it is the W
optimal action” - Thompson 1933

TS uses a data-dependent distribution to model the mean of the reward
distribution for each arm.
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_ _ o P Example when the true mean of the optimal arm is underestimated,
Vanilla TS uses Gaussian distributions to model the mean reward: and the is also “bad”.
e Compute the empirical mean of each arm and build the posterior

distribution: Our Improved Bound
e Draw a as a proxy for goodness of arm.

First, we show that the expected number of rounds is at most 29 for us
to have a good sample for the optimal arm

Algorithm 1 Thompson Sampling with Gaussian Priors [1]
1: Initialization: for each i € [K]: pull it once to initialize n; and the empirical mean i, ,,

2 fort=K+1,K+2,--- do Lemma 2 Let 7'5(1) be the round when the s-th pull of the optimal arm 1 occurs and 6,5 ~
3:  Draw 6;(t) ~ N ([Li,n“ %) foralli € [K]| N (/11,3, %) Then, for any integer s > 1, we have
4:  Pull arm 4, € arg max;¢ () 0:(t) and observe X, (1)
5. Setn;, < n;, + 1 and update the empirical mean fi;, n,, of the pulled arm 7; accordingly. 1
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e The coefficient for the leading term is at least
64 30 Note that our improved problem-dependent regret bound also implies an
288 - " ~ 1.8 x 10 improved worst-case regret bound.

e Since the regret is at most T, the regret bound is vacuous for learning
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