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Abstract

Sim-to-real gap has been a challenging prob-
lem in most Reinforcement Learning (RL) set-
tings. And this is largely due to the fact that the
majority of RL algorithms have been trained
on selected environment parameters. In this
project, we build on an existing method and
try to learn a control policy that is prepared to
be executed in a dynamic environment, where
the parameters of the environment are chang-
ing. Such policy with online system identifying
capabilities also tends to be more robust to en-
vironments outside of the training range, which
could help in closing the reality gap. Specifi-
cally, we first implement the main components
of the baseline paper from scratch and then
propose different modifications to the architec-
ture. Quantitatively, we test the robustness of
our new modifications and run ablation studies
beyond the existing pipeline.

1 Introduction
Reinforcement Learning problems in simulation often
train and test agents in a known or pre-determined en-
vironment. However, when deploying policies to the real
world, more often the environment could be unknown or
even dynamic. These kinds of environments can be much
harder to work with, as the policy of the agent needs to
be far more robust than in classic RL problems with fixed
environments, and it is more costly to make mistakes in
real environments. Closing this gap between simulation
and reality has become a popular research direction and
could potentially enable many RL techniques to be ap-
plied in real life. Existing works [1][2][3] have tried to
approach this problem via transfer learning, learning a
robust policy or a more accurate model, etc.
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Yu et al. [4] proposed using an online system identi-
fication to determine dynamic system parameters on-the-
go. The purpose of their approach was meant to handle
the more complicated case where the environment is un-
known. This entails developing a universal policy that is
both applicable and robust to a variety of environments.
It also involves the agent being able to determine exactly
what environment it is, so that the universal policy can
be effectively utilized. This advantage of this approach
is practical for many reasons. For one, it simulates the
dynamic environment that autonomous cars are deployed
in, having being trained first from simulation. Such appli-
cation requires the agent (car in this case) to have a very
robust policy, and be able to accurately assess the current
environmental conditions. This is because a poorly pre-
dicted estimate of the environment could have fatal con-
sequences. Other applications of RL in unknown envi-
ronments such emergency response agents are also areas
of interest and are being actively researched. These are
among many of the possible applications.

To this end, our project follows closely with devel-
oping a robust policy for unknown environments. The
work of [4] positions itself as our baseline method. Our
objective, therefore, is to implement the main compo-
nents of their approach, attempt to reproduce their re-
sults, and moreso, develop some extensions to their cur-
rent pipeline. At a high level, our project steps went as
follows. We picked an environment to work with, and
chose the parameters that we would perturb to simulate
an unknown environment. In our initial implementation,
we developed a code base for the portion of their algo-
rithm that finds a universal policy. Notably, we build on
the code for assignment 4 in training the universal pol-
icy, which served as a good baseline. We then imple-
mented their OSI algorithm using their text-written pseu-
docode. After that, we linked these algorithms together
to create the final pipeline discussed in our methodology
section. However, we highlight some key differences in
our project compared to the model paper, and also show-
case the propositions that we made as extension to their



pipeline. Finally, we ran ablation studies and discuss our
results in the results and discussion section.

2 Related Works

2.1 Deep Reinforcement Learning

Neural networks from deep learning are used to find good
policies for reinforcement learning problems, giving birth
to the name deep RL. A commonly known deep RL
method is the double DQN algorithm [5] which is an ex-
tension of the initial DQN method. The rationale behind
their new algorithm is that previous versions of this al-
gorithm could incorrectly estimate action values, which
could in the worst case even lead to sub-optimal policies.
By combining very classical RL technique of Q-learning
with neural networks, they show that they show that their
algorithms are more stable in training and can overall lead
to better policies.

Another important aspect of deep reinforcement learn-
ing is in entertaining applications such as Atari games.
[6] uses a convolutional neural net with image pixels to
develop policies for the agent to follow. [7] also applied
deep RL to the area of inventory control. The importance
of neural networks in RL has grown and has bcecome an
active area of research in the space.

2.2 Transfer Learning in Reinforcement Learning

Transfer learning [8] has been an effective training strat-
egy in recent times, where we we use the information
found from training one problem to bootstrap the train-
ing of a new, but usually similar problem. In the context
of RL, this would mean reusing policies for similar prob-
lems. One particular application of transfer learning is in
the context of multiagent problems. In [9], the authors
developed a new Multiagent Policy Transfer Framework
(MAPTF), which allows agents to effectively learn from
each other. This framework works for agents undergo-
ing various experiences as they interact with their envi-
ronment while selecting the appropriate policy for each
agent to follow (since each agent could be following a
different policy).

Another example of transfer learning in RL can be seen
in games. [10] used the same idea in transferring data
about policies from one game to another. In particular,
the authors used a network learned from the game Puck-
world as a starting point for training a network for the
game Snake. They find that this leads to the agent per-
forming better in the Snake game. Also, transfer learning
in RL is also used in the context of robots as well, as
seen in [11]. In particular, the robot goes through vari-
ous experiences in one environment and uses what it has
learned to better adapt to a new environment it is put into.
This parallels the ideas presented in our model paper [4],
where our agent needs a policy that allows it to perform

well in a variety of different environments.

2.3 Learning Policy in Unknown Environment
Technically, learning a policy in an unknown and possi-
bly dynamic environment can be challenging. Amongst
several works, [1] also explores the situation where the
environment is both unknown and dynamic. In partic-
ular, their paper uses an actor-critic method and recur-
rent neural networks to guide robots through an environ-
ment that has moving obstacles. They justify their ap-
proach by stating that it allows the robot agent to better
handle and take more appropriate actions in a noisy en-
vironment. A more recent and potentially complicated
domain is the work done by [2]. For this paper, the
authors explore how to develop a policy for unmanned
aerial vehicles (UAV’s) to effectively navigate through an
unknown environment. They also mentioned that previ-
ous approaches to this problem were often insufficient
and were broken up into more than one phase in an at-
tempt to explore the environment first, before exploiting
the environment in a later phase to learn an optimal pol-
icy. However, as they mention, this is not always prac-
tical or even useful, since in a dynamic environment this
would not work. If the environment is continually chang-
ing, the agent needs to be able to learn the optimal policy
as the environment changes. They propose an adaptive
algorithm that can achieve both exploration and exploita-
tion in one phase.

However, [3] demonstrated the possibility of learning
in unknown environments for multi-agent settings. The
authors looked at dealing with the situation where more
than one agent is present in the environment. In par-
ticular, they examined the problem of crowd navigation
which is a problem of interest because the agents need
to avoid colliding with obstacles in the environment as
well as with each other, thereby adding further complex-
ity. Even though our model paper [4] doesn’t discuss the
multi-agent case, it’s very much a relevant future direc-
tion.

3 Methodology
In this section, we discuss briefly the UP-OSI algorithm
from our model paper [4], and highlight more on our
modifications to this approach. The algorithm consists
of two main components, a universal policy (UP) and an
online system identification model (OSI).

3.1 Training UP - The Universal Policy
Actor-critic Networks proposed by [12] have shown to
be successful in developing good control policies, with
the advantage of using a critic network to nudge the pol-
icy to good or optimal solutions. The model paper [4]
used a 2-layer fully-connected network to learn their pol-
icy. This is simple but does not take the advantage of



Figure 1: UP Diagram: The universal policy formu-
lated as a reinforcement learning problem where (UP),
π : (s, µ) takes as input, the state and environment pa-
rameter to give an action u. The action is effected on the
environment to produce the next state st+1.

using a critic network. We leverage that advantage and
used a critic network for our policy. Specifically, we
start from the codebase in homework 4, where we train
an actor-critic network using a proximal policy optimiza-
tion (PPO) method with a clipped surrogate objective and
GAE lambda advantage. However, the policy from this
setup is for a fixed environment parameter µ, which is
the default parameter given by OpenAI gym [13].

In order to generalize to dynamic settings, we extend
the exploration scheme, similar to [4], such that the pol-
icy takes the environment parameter µ as an input, which
is sampled from a uniform distribution ρµ. For each µi,
we generate a set of rollouts under the policy π(s, µi) and
store the state, action, and reward collected from forward-
ing. Then we update the policy π using PPO. See Figure
1.

Algorithm 1 Learning UP with PPO clipped objective
1: Randomly initialize UP network π
2: for i=1:K do
3: µ ∼ ρµ
4: s ∼ ρ0
5: while R.size ≤MaxStep do
6: a = π(s, µ)
7: s = fµ(s, a)
8: r, terminated = Reward(s, a)
9: Push (s, a, r) into R

10: end while
11: Update π with data in R using PPO
12: end for
13: return π

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1−ϵ, 1+ϵ)At)]
(1)

where ϵ is an hyperparameter, At is advantage term,
and rt is the probability ratio defined as,

rt(θ) =
πθ(at|st)
πθold(at|st)

(2)

3.2 Training OSI - The Online System Identification
With a good universal policy (UP), the model now can
perform well if given true but changing environment pa-
rameters, but this true information is practically not avail-
able in most real-world settings. However, we need a
system that can identify the environment online, which
means, good enough to work with estimates instead of
true parameters. To achieve this, we formulate a super-
vised problem similar to [4] to train the online system
identification model (OSI). In contrast to their approach,
we designed our OSI to be independent of the current
state st, and only need the recent history to sufficiently
make parameter estimates. Hence, OSI denoted as ϕ
takes as input the state-action pairs to predict the envi-
ronment parameter µ. The input and illustration of the
internal components of OSI is shown in Figure 4.

Our optimization for OSI follows a residual error min-
imization objective described in Eqn 3.

θ∗ = argmin
θ

∑
(Hi,µi)⊆B

|ϕθ(Hi)− µi|2 (3)

where θ are the parameters of the neural net ϕθ, µ is the
true environment parameter, H is a history buffer that
stores a fixed size of state and actions taken by the agent,
andB is a buffer that stores the information of updatedH
generated in each environment. We modified their algo-
rithm to better suit our environment and collected data for
training OSI. The details are shown in Algorithm 2. We
also ablate on different strategies for minimizing our er-
ror objective and subsequently training OSI. We discuss
these strategies in the experimental results and discussion
section.

3.3 Connecting UP and OSI
Once the UP and OSI network are trained, sequentially,
we connect them together into a single UP-OSI system.
In this system, UP performs online inference in an un-
known environment. A history rollout buffer that is gen-
erated in real time is fed as input to OSI to make predic-
tions about the environment. The environment parameter
estimates are given to the universal policy to take the op-
timal action. Note that the policy can be further refined in
this new environment, but even without online learning,
it gets a warm start in an environment that is outside of
its training range. The pipeline is shown in Figure 2.

4 Environment
We use Cart-Pole, classic control environment provided
by OpenAI gym [13], named CartPole-v0. In this envi-
ronment, a pole is attached to a cart, which moves along a



Algorithm 2 Learning OSI
1: Randomly initialize OSI network ψ
2: for i=1:K do
3: µ ∼ ρµ
4: for j=1:N do
5: Initialize history queue H
6: Fill H by simulating under π(s, µ) and fµ
7: for t=0:T-1 do
8: Pop H
9: at = π(st, µ)

10: st+1 = fµ(st, at)
11: Push (st+1, at in H
12: H,µ in B
13: end for
14: end for
15: end for
16: Optimize ψ using data in B
17: return ψ

Figure 2: UP-OSI Pipeline: UP takes as inputs the current
state and environment parameter µ predicted by OSI, and
outputs a policy that steps in the environment to produce
the next state and action. This information updates the
history rollout buffer H, which is an input of OSI, and the
environment parameter prediction µ is updated based on
the new state and action history.

frictionless track. The system is controlled by applying a
force of +1 or -1 to the cart. The pendulum starts upright,
and the goal is to prevent it from falling over. A reward
of +1 is provided for every timestep that the pole remains
upright. The episode ends when the pole is more than
15 degrees from vertical, or the cart moves more than 2.4
units from the center. Action space is either moving the
cart to the left or to the right. Observation space is 4-
dimensional, that includes the cart position, cart velocity,
pole angle, and pole angular velocity. See Figure 3

Our environment parameter µ is a 4D vector, with each
dimension representing gravity, cart mass, pole mass, and
pole length respectively. For the training range, we chose
a reasonable set of values below and above the true pa-

Figure 3: OpenAI Cart-pole action space[14].

Env Prarameters Training Range Testing Range
Gravity [6.8-12.8] [12.8-15]
Cart Mass [0.1kg-1kg] [1.0kg-1.9kg]
Pole Mass [0.1kg-.5kg] [0.5kg-0.9kg]
Pole Length [0.2-0.8] [0.8-1.4]

Table 1: Environment parameters and the split range used
in our experiment

rameters of the environment. For testing, we define a
range outside the training range, to see how policies per-
form in unseen scenarios, as detailed in 1. And for an ex-
treme case, we set gravity to a very high value, 70 without
changing other parameters.

5 Experimental Result and Discussion

In this section, we discuss the result of our experiments
as well as the effect of different choices.

5.1 Evaluate UP Policy

First, we compare the performance of direct policy trans-
fer (by directly using policy trained on one environment
without parameter input, to perform in another environ-
ment) versus the universal policy. For direct transfer, we
trained our policy using PPO and GAE lambda advantage
on the default cart-pole environment provided by Ope-
nAI gym. We trained on default environment parameters
for 250 epochs. For universal policy, we trained with the
same setup but with 30 sets of different environment pa-
rameters uniformly sampled from the training range, each
for 250 epochs.

We ran several tests with the two trained policy
weights, using environment parameters that is sampled
from the test range. The UP policy did not perform as
well as direct policy transfer, we suspect it is because in
a simple environment such as cart-pole, our policy is not
sensitive to small changes in the environment. Therefore
we instead tested the two policies in an environment with



Figure 4: A diagrammatic representation of our OSI model. Similar to [4], the network is composed of 3 Linear layers
where the size of each layer is reduced by a factor of 2. Each of them is followed by a tanh activation function and
a dropout of 1.0. The input to the network is the history buffer, and the output of the network is the estimated model
parameters.

gravity = 70, to see if policies perform differently in an
extreme case. The result is shown in Figure 5.

Clearly, universal policy performs better in an environ-
ment that is completely different from the training envi-
ronment. While this trial is only using the trained weights
to perform roll-outs, we are also interested in the case
where the agent continues to learn the new environment.
We allowed the policy to be updated to see if the two
methods could achieve the same result. See Figure 6.

From the figure, we can see that although UP policy
gets a head start in the new environment, a simple policy
without knowing the environment could achieve a higher
reward faster. The reason for this could be that there is
a trade-off between being robust to environment changes
and learning one stationary environment quickly. Direct
policy transfer could work better in a stationary environ-
ment with enough training. An interesting future direc-
tion is to see if universal policy has better online perfor-
mance, especially in a dynamic environment.

Figure 5: Direct policy transfer(blue) versus universal
policy(orange) in an environment that is extremely dif-
ferent from training environment(gravity = 70), without
updating policy

Figure 6: Direct policy transfer(blue) versus universal
policy(orange) in an environment that is extremely dif-
ferent from training environment(gravity = 70), while up-
dating policy

5.2 Evaluating OSI

Batch size Loss Function Train (error) Validation (error)
32 L1 0.0207 0.0181
32 L2 0.0387 0.0358
64 L1 0.0129 0.0123
64 L2 0.0221 0.0224
128 L1 0.0067 0.0064
128 L2 0.0112 0.0127
192 L1 0.0045 0.0040
192 L2 0.0079 0.0068

Table 2: Ablation study on the optimal configuration for
training the OSI model. We trained for different combi-
nations and show how each configuration influences the
supervised residual objective in Eqn 3.

Training OSI is completely formulated as a supervised
learning problem. We start with buffers of information
collected during the universal policy rollout. Each buffer
contains the recent history of state-action pairs. As our



policy relies on a good OSI model, we carefully investi-
gate different training strategies via hyperparameter tun-
ing to identify the most optimal model for the complete
pipeline. As shown in Table 2, we test for different batch
sizes from 32 to 192, nearly increasing by a factor of 2,
except for the last one, 192. As seen in the table, a large
mini-batch size produced the least validation error. With
a fixed learning rate, this result surprisingly opposes the
small mini-batch size proposition made by [15] in his
paper. For loss functions, we explored the effect of using
an L1 or L2 loss, simply because our data was collected
from rollouts which can be noisy. L1 Loss produced the
least generalization error of 0.0040 - row 4, column 4,
confirming its robustness to noisy samples than L2 loss
which is more sensitive to outliers. Therefore, our OSI
performed best with a batch size of 192, an L1 loss, and
an epoch size of 500.

Figure 7: Significant improvements of UP-OSI across
new testing environments.

5.3 Evaluating UP-OSI

To evaluate the joint UP-OSI pipeline, we test the al-
gorithm in different environments outside the training
range, called the testing range, as shown in Table 1. The
ideal parameters for the cartpole environment fall within
the training range which means the testing range is com-
pletely different from what either UP or OSI is trained
on. We sample K = 3 environments uniformly within
the testing range where each K ∈ R4 is a set of en-
vironment parameters including gravity, cart mass, pole
mass, and pole length. In each of these environments,
we observe significant episode return for UP-OSI (blue,
red, and green) compared to UP-True, seen in Figure 7.
Alternatively for UP-True, the return shows a nearly flat
curve (after the 50th epoch) indicating that the algorithm
is unable to make new progress after a certain point in the
new environment. In contrast, UP-OSI produces returns
that show some indication of learning/understanding the

new environment as the return curve does not lie flat (par-
ticularly for K1 and K2 in red and blue). Therefore, us-
ing OSI as a self-sustaining system identification model
makes a huge difference between UP-True and UP-OSI
for better understanding of new environments.

Figure 8: Limited training sub-space using Gravity as an
example - Blue is the ground-truth parameter and orange
is the prediction at environment K=0, K=1 and K=3.

6 Trial and Limitations
One major limitation we discovered is that the perfor-
mance of our policy relies on a good OSI model. This
means, if the OSI, for reasons unknown, is trained incor-
rectly or optimized on mis-aligned input data, the result
could lead to a poor policy. To overcome this, future work
could include training the UP-OSI algorithm all together
without any isolated offline pre-training. Additionally,
we also discovered that the OSI model can easily over-
fit a small sample of buffer data, thereby making almost
the same predictions at inference time. This is possible
if the parameters are sampled from some set of the train-
ing range (though this is unexpected). This sub-sampling
could lead to making the same predictions, as shown in
Figure 8. To overcome this limitation, one needs to sam-
ple large-enough training data that mostly covers the en-
tire range, in order to encourage better generalization for
the OSI model.

7 Conclusion and Future Work
In this project, we have demonstrated that it is possible
to learn a universal policy in a self-sufficient manner for
new dynamic environments. We achieve this by develop-
ing new modifications to the main idea and experiment-
ing with different selection choices that work best for our
environment.

Therefore, there are many directions and experiments
that could be explored for future work. One particular
extension could be looking at how to handle an unknown



environment with multiple agents, each possibly requir-
ing its own universal policies. Another possible exten-
sion could be trying a different policy update, such as
SAC (Soft Actor-Critic), and see if this leads to poten-
tially more robust universal policies. Finally, looking at
how the algorithm may need to be changed to deal with
dynamic environments is an interesting problem, since an
agent may not always be in a static environment. In terms
of possible experiments one could perform, looking at
how far outside the training range one could vary the en-
vironment so that the universal policy is no longer useful
(in other words, how robust can the universal policy be
made) could be of interest as well. This will of course
depend on the particular environment, but it is something
worth exploring and comparing across different environ-
ments of varying complexity. As well, using the algo-
rithm written in a more complicated environment other
than cart-pole could have led to some interesting findings.
In a more complicated environment, even a small change
could possibly lead to a wildly different universal policy,
and this could potentially be worth studying.

Conclusively, transfer learning from static to a com-
pletely dynamic environment is possible. With more
ideas, research and a few papers down the line, this area
of research could become standard in the RL community.

As a takeaway: This project provided a great oppor-
tunity for us to implement an existing idea from zero
(which means not using their codebase). Moreso, it cre-
ated an avenue for us to build on the work of others, and
also think critically of how to extend what is possible.
Thanks.

8 Appendix
See https://github.com/tianyuehz/533VProject for the
link to our github project.
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